学术论文
[1]王双明,师庆民,孙强,等.富油煤原位热解技术战略价值与科学探索[J].煤田地质与勘探,2024,52(07):1-13.
[2]王双明,师庆民,王生全,等.富油煤的油气资源属性与绿色低碳开发[J].煤炭学报, 2021, 46(05): 1365-1377.
[3]师庆民,赵奔,王双明,等.三塘湖盆地侏罗系富油煤特征及沉积环境控制[J].石油学报,2024,45(05):787-803.
[4]师庆民,耿旭虎,王双明,等.基于煤体真密度和自然伽马响应规律的富油煤判识[J].煤田地质与勘探, 2024, 52(7): 85-96.
[5]师庆民,米奕臣,王双明,等.富油煤热解流体滞留特征及其机制[J].煤炭学报, 2022, 47(3): 1329-1337.
[6]师庆民,王双明,王生全,等.神府南部延安组富油煤多源判识规律研究[J].煤炭学报,2022,47(5):2057-2066..
[7]师庆民,屈争辉,冯乐,等.煤镜质组反射率的定向特征及其应力指示意义——以淮北矿区为例[J].地质论评, 2014, 60(5): 1093-1101
[8]师庆民,冯乐,窦鲁星,等.基于驻波理论解释丘状交错层理——以徐州地区贾园组风暴沉积为例[J].沉积学报, 2013, 31(6) : 1008-1013.
[9]师庆民,赵馨悦,王双明,et al. Differences in pyrolysis behavior and volatiles of tar-rich coal with various origins[J]. Fuel Processing Technology, 2025, 268: 108181.(不同成因富油煤热解行为差异研究)
[10]师庆民,耿旭虎,王双明,et al. Tar yield prediction of tar-rich coal based on geophysical logging data: Comparison between semi-supervised and supervised learning[J]. Computers & Geosciences, 2025, 196: 105848.(基于地球物理测井预测富油煤焦油产率研究)
[11]寇丙洋,师庆民*,王双明,et al. Axial pressure impact on pyrolysis behavior of Xinjiang coal: An inspiration for in-situ pyrolysis of tar-rich coal[J]. Fuel Processing Technology, 2025, 267: 108175.(单轴荷载下新疆富油煤热解行为研究)
[12]寇丙洋,师庆民*,王双明,et al. Co-evolution with pore and molecular structure during tar-rich coal pyrolysis[J]. Case Studies in Thermal Engineering, 2024, 62: 105215.(富油煤热解的孔隙-分子结构协同演化研究)
[13]崔世东,师庆民*,秦勇,et al. The behavior and model of methane adsorption on coal by ultrasonic enhancement[J]. Fuel, 2024, 377: 132795.(超声波激励下甲烷吸附行为及模型研究)
[14]崔世东,师庆民*,秦勇,et al. Effect and mechanism of ultrasonic mechanical vibration on methane adsorption[J]. Geoenergy Science and Engineering, 2024, 233: 212513.(超声机械振动效应对甲烷吸附的影响机制)
[15]师庆民,石亚亚,王双明,et al. Experimental study on the tar and gas distribution during tar-rich coal pyrolysis with stress loading[J]. Fuel, 2024, 376: 132727.(应力荷载下富油煤热解油气产出规律研究)
[16]师庆民,赵军 冀瑞君, et al. Depositional Environment and Origin of Inertinite‐rich Coal in the Ordos Basin[J]. Acta Geologica Sinica‐English Edition, 2024, 98(4): 1064-1085.(鄂尔多斯盆地富惰质组煤成因研究)
[17]赵军,师庆民*,王双明,et al. Study on molecular structural heterogeneity of tar-rich coal based on micro-FTIR[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 330: 125749.(基于原位红外技术的富油煤分子结构非均质研究)
[18]师庆民*,米奕臣,王双明, et al. Pyrolysis behavior of tar-rich coal with various coal-forming environments: A TGA and in-situ transmission FTIR study[J]. Fuel, 2024, 358: 130250.(不同成煤环境背景的富油煤热解行为)
[19]师庆民*,李春昊,王双明, et al. Variation of molecular structures affecting tar yield: A comprehensive analysis on coal ranks and depositional environments [J]. Fuel, 2023, 335: 127050.(富油煤焦油产率的分子级约束:综合考虑煤级和沉积环境地质因素)
[20]师庆民*,寇丙洋,王双明, et al. Porosity Changes in Thermally-Treated Bituminous Coal During Step-by-Step Crushing: Implications for Closed Pore Variations with Temperature [J]. Natural Resources Research, 2023: 1-20.(基于逐级粉碎方法的富油煤热解封闭孔结构演化)
[21]师庆民*,崔世东,王双明, et al. Experiment study on CO2adsorption performance of thermal treated coal: Inspiration for CO2storage after underground coal thermal treatment[J]. Energy, 2022, 254: 124392.(热解煤的CO2吸附行为研究:对地下原位热解富油煤层CO2封存的启示)
[22]师庆民*,李春昊,王双明, et al. Effect of the depositional environment on the formation of tar-rich coal: A case study in the northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110828.(鄂尔多斯盆地富油煤赋存及其沉积环境约束规律)
[23]师庆民*,寇丙洋,孙强, et al. Experimental study on pore structure evolution of high volatile bituminous coal with thermal treatment[J]. Case Studies in Thermal Engineering, 2022: 101862.(富油煤热解孔隙结构演化规律)
[24]师庆民,秦勇*,陈义林. Relationship between thermal conductivity and chemical structures of chinese coals[J]. ACS omega, 2020, 5(29): 18424-18431.(煤体导热率与煤分子结构关系)
[25]师庆民,秦勇*,周斌扬, et al. Porosity changes in bituminous and anthracite coal with ultrasonic treatment[J]. Fuel, 2019, 255: 115739.(超声作用下烟煤和无烟煤孔隙演化规律)
[26]师庆民,秦勇*,周斌扬, et al. An experimental study of the agglomeration of coal fines in suspensions: Inspiration for controlling fines in coal reservoirs, Fuel, 2018, 211, 110-120.(煤粉在悬浮液中的团聚行为:对储层煤粉运移的启示)
[27]师庆民,秦勇*,李久庆, et al. Simulation of the crack development in coal without confining stress under ultrasonic wave treatment, Fuel, 2017, 205, 222-231.(超声作用下煤体裂隙演化规律)
[28]师庆民,秦勇*,李恒乐, et al. Response of pores in coal to repeated strong impulse waves. Journal of Natural Gas Science and Engineering, 2016, 34, 298-304.(煤体孔隙对重复脉冲波作用的响应规律)
[29]崔世东,师庆民*,王双明, et al. Effect and mechanism of ultrasonic mechanical vibration on methane adsorption[J]. Geoenergy Science and Engineering, 2024, 233: 212513.(超声波机械振动效应对煤体吸附甲烷的影响和机制)
[30]李得路*,师庆民, et al. The type, origin and preservation of organic matter of the fine-grain sediments in Triassic Yanhe Profile, Ordos Basin, and their relation to paleoenvironment condition[J]. Journal of Petroleum Science and Engineering, 2020, 188: 106875.(鄂尔多斯盆地三叠系延河剖面细粒沉积物有机质类型、来源、保存及其与古环境关系)